Java solution to Project Euler Problem 6

Problem 6:

The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + … + 10^2 = 385

The square of the sum of the first ten natural numbers is,
(1 + 2 + … + 10)^2 = 55^2 = 3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is
3025 – 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

Running time: 0ms

Assessment: I exhibited symptoms of brain inversion the first time I read the problem description. I was very tired when I wrote this. How do I know? There are zombies in my code. Flail!

public class Problem006
{
	private static long sum_squares(int n)
	{
		int total = 0;
		for (int i = 1; i <= n; i++)
			total += (i*i);
		System.out.println("sum_squares() = " + total);
		return total;
	}
 
	private static long squares_sum(int n)
	{
		long total = 0;
		for (int i = 1; i <= n; i++)
			total += i;
		total *= total;
		System.out.println("squares_sum() = " + total);
		return total;
	}
 
	public static void main(String args[])
	{
		long begin = System.currentTimeMillis();
		long omg_zombies = squares_sum(100) - sum_squares(100);
		long end = System.currentTimeMillis();
		System.out.println(omg_zombies);
		System.out.println(end-begin + "ms");
	}	
}

1 thought on “Java solution to Project Euler Problem 6

  1. solution in java for project euler problem 6

    public class problem6
     {
      public static void main(String args[])
      {
    int total = 0;
                    int tot=0;
                    int diff=0;
                    for (int i = 1; i <= 100; i++)
                    {
    total += (i*i);
                            tot+=i;
                   diff=(tot*tot)-total;
                   
                    }
    System.out.println("sum_squares() = " + total);
                    System.out.println("squares_sum() = " + tot);
                     System.out.println("difference= " + diff);

    }
    }

Leave a Reply

Your email address will not be published. Required fields are marked *